منابع مشابه
Priestley Rings and Priestley Order-Compactifications
We introduce Priestley rings of upsets (of a poset) and prove that inequivalent Priestley ring representations of a bounded distributive lattice L are in 1-1 correspondence with dense subspaces of the Priestley space of L. This generalizes a 1955 result of Bauer that inequivalent reduced field representations of a Boolean algebra B are in 1-1 correspondence with dense subspaces of the Stone spa...
متن کاملA non-commutative Priestley duality
We prove that the category of left-handed skew distributive lattices with zero and proper homomorphisms is dually equivalent to a category of sheaves over local Priestley spaces. Our result thus provides a noncommutative version of classical Priestley duality for distributive lattices. The result also generalizes the recent development of Stone duality for skew Boolean algebras.
متن کاملGeneralized Priestley Quasi-Orders
We introduce generalized Priestley quasi-orders and show that subalgebras of bounded distributive meet-semilattices are dually characterized by means of generalized Priestley quasi-orders. This generalizes the well-known characterization of subalgebras of bounded distributive lattices by means of Priestley quasiorders (Adams, Algebra Univers 3:216–228, 1973; Cignoli et al., Order 8(3):299– 315,...
متن کاملPriestley Duality for Bilattices
We develop a Priestley-style duality theory for different classes of algebras having a bilattice reduct. A similar investigation has already been realized by B. Mobasher, D. Pigozzi, G. Slutzki and G. Voutsadakis, but only from an abstract category-theoretic point of view. In the present work we are instead interested in a concrete study of the topological spaces that correspond to bilattices a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Science
سال: 1917
ISSN: 0036-8075,1095-9203
DOI: 10.1126/science.46.1183.214